

uDoc Specification1
Version 0.8, January 3, 2014

This specification describes the uDoc document format, a new topic-oriented markup language based on MicroXML for technical and business publishing. Pronounced “You-Doc”, it is simple enough for writers who are inexperienced in XML, while still providing the structure needed for content standardization, collaboration, and re-use.

This specification is published on GitHub as uDoc source, as a Word doc, and as OmniHelp.

Table of Contents

1 The uDoc Document Format

3Chapter 1. Why Use uDoc?

41.1 uDoc Alternatives

51.2 uDoc Error Recovery

61.3 uDoc Interoperability

71.4 uDoc Hierarchies

71.5 uDoc Development

81.6 uDoc Tag Minimization

101.7 uDoc Metadata

111.8 uDoc Element Types

141.9 uDoc Files

151.9.1 uDoc Maps

151.9.2 uDoc Docs

161.9.3 uDoc Libs

18Chapter 2. uDoc Structures

182.1 Grouping Elements

182.2 Lists

202.3 Graphics

212.4 Tables

232.5 Tabs

25Chapter 3. uDoc Processing

253.1 References and Variables

263.2 Queries

263.3 Related Links

273.4 Classes and Formats

i3.5 Conditional Processing

 28
293.5.1 Test of Conditions: Novices

293.5.2 Test of Conditions: Experts

293.6 Branching

303.7 Dynamic Show and Hide

313.8 Output-Dependent Processing

32Chapter 4. uDoc Addressing

324.1 Addressing in References

324.2 Indirect Addressing

334.3 Addressing Other Projects

35Chapter 5. uDoc File Generation

355.1 Generated Lists and Indexes

365.2 Indexing

365.3 Glossary

375.4 Abbreviations

39Chapter 6. uDoc Elements

396.1 Creating New Elements

406.2 Events and Ranges

406.3 Range Generation

416.4 Creating New Shorthand Symbols

426.5 Foreign Elements

426.6 Content Models

436.7 Element Properties

456.8 Element Attributes

49Appendix A. Comparison of Markup Formats

51Appendix B. uDoc Sample Files

51B.1 uDoc Map File

52B.2 uDoc Doc File

53B.3 uDoc Lib File

55Appendix C. Standard uDoc Libraries

C.1 localattrs.mxl
 55
C.2 localelems.mxl
 55
C.3 stdabbrs.mxl
 56
C.4 stdattrs.mxl
 57
C.5 stdelems.mxl
 60
C.6 stdgloss.mxl
 74
C.7 stdlists.mxl
 78
C.8 stdtmarks.mxl
 79
C.9 stdvars.mxl
 80
81Appendix D. MXL MicroXML Parser

81D.1 MXL Operation

82D.2 Data Model

82D.3 SAX Callbacks

83D.4 Licensing

85Appendix E. The udx Utility

85E.1 The udx Switches

86E.2 The udx.ini File

89E.3 The <udx> Tag

Glossary
 90
Abbreviations
 91
Trademarks
 91
Index
 92
List of Figures

20Figure 2-1 Angel

21Figure 2-2 Tai Shan

List of Tables

9Table 1-1 My Title

9Table 1-2 My Title

22Table 2-1 DITA List Types

23Table 2-2 Omni's Products

43Table 6-1 Numbered Rows

The uDoc Document Format1
uDoc is a new document format based on MicroXML. It is topic-oriented like Darwin Information Typing Architecture (DITA), but has a critical difference in design. Where DITA requires you to fit your data into one of several standard formats, uDoc helps you create a format that exactly fits your own use case, but will still work with a standard toolset and provide good interchangeabiliy with other users.1xe "MicroXML:basis for uDoc format"
Note that while uDoc does not impose a xe "schema, creating your own for uDoc"schema on you, you are perfectly free to create your own schemas (possibly using xe "Relax NG, for creating schemas"Relax NG) whenever you find they are useful for your own purposes. Nothing in uDoc prevents this or even discourages it. As Uche Ogbuji said in a recent post on [xml-dev]:

When a need for an XML schema comes about, it will show itself apparent in the context of practice, often long practice, and ideally it will be minimal and as flexible as possible given the need. That's the point with regard to markup, folks.

The primary designer of the xe "uDoc"uDoc format is Jeremy H. Griffith, with the invaluable support of the rest of the Omni Systems team, especially the Publications Manager, Carolyn Stallard. As the CTO of Omni, he has had extensive experience with technical writing issues (over 50 years in the field), as well as with computer language design. When he heard of the xe "MicroXML"MicroXML initiative, he became involved right away. He wanted to see what James Clark and John Cowan, two people for whom he has the highest respect, would come up with as a simplified XML. He was very pleased with the result, and was inspired to use it as the basis for uDoc.

At Omni, he led the work that created xe "Mif2Go"Mif2Go, a powerful FrameMaker converter that produces numerous formats (HTML, RTF, XML, and many kinds of online help), and its follow-on DITA2Go, with the same outputs from DITA source. Mif2Go™ is known as the top-ranked converter for going from xe "FrameMaker, converting:to DITA"FrameMaker to DITA, a path being taken by many companies now. Designing both ends of the process, conversion to and from DITA, has given him a very deep understanding of what is valuable about DITA... and what isn't. He also designed the xe "FrameMaker, converting:to DocBook"DocBook output converter in Mif2Go, providing another view of how technical documents can be structured.

It slowly became clear that while DITA had many benefits, it was being strangled by its own xe "Darwin Information Typing Architecture (DITA), complexity of"overcomplexity. This was the natural result of starting with a fixed content model, then adding to it as required to handle use cases never imagined at the beginning. Since DITA is based on constraints, limiting what can go into an element and what attributes it can have, new elements have to be less capable than the ones they are based on, which is a constant source of gotchas. This design is not helpful for writers trying to get a job done.

DITA is also hampered by inadequate tools, which is ironic as better tool availability is claimed to be one of its major advantages. The xe "DITA-OT"DITA-OT, a collection of xe "XSLT"XSLT scripts, requires customization by an XSLT programmer for any use case that isn't as trivial as the sample files... and tech writers with no programming experience are expected to do this because, after all, XSLT is just a “script”. A couple of weeks reading the Yahoo [dita-users] list will convince anyone this is a non-trivial task; the list is high volume, and discusses little else. Unfortunately, this also gives users the idea that the DITA-OT is the only approved way to go, and that becomes a self-fulfilling prophecy, as vendors won't invest major resources in tool development (as Omni Systems did for DITA2Go™) if people won't buy the tool because the OT is both “official” and “free”.

So with uDocxe "format, uDoc:" \t "See uDoc", we took the opposite approach. No content model (MicroXML doesn't use DTDs anyway), and a set of elements as small as possible, so they would remain manageable. uDoc also provides a simple copy/paste method of adding more elements if wanted, as opposed to the complex DTD authoring required for even a simple addition to DITA. Support for uDoc's outputs is provided by uDoc2Go™, a very solid commercial-quality converter from Omni Systems, so XSLT scripting is never needed. This makes uDoc a highly-usable format for producing technical and business documentation of all types. A detailed comparison chart of uDoc vs. DITA is at 49

.
Appendix A. Comparison of Markup Formats on page
Chapter 1. SEQ C2 \r0 \h

SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h

SEQ C6 \r0 \h

SEQ C7 \r0 \h

SEQ C8 \r0 \h Why Use uDoc?3
Many writers have found great benefit in using a building-block model for their documents. It simplifies division of labor, re-use, and review processes, for starters. It's been in use since at least the '60s, initially as “Information mapping”.

One of the main current exemplars of this approach is Darwin Information Typing Architecture (DITA), with topics of numerous types organized by maps. So quite a few writers have been converting from legacy formats, like those used by FrameMaker, into DITA. But they are discovering some serious issues, usually well after committing to the process.

A major issue is complexity. XML started out as a simpler way of doing SGML, but has steadily grown until design of XML docs has become a job for experts. This is an entirely natural trend, seen in many areas. As the simple design is applied to more and more use cases, it grows to fit them. Recently James Clark and John Cowan, two of the pioneers of XML, have seen the need to step back and try again, with a simpler format they call MicroXML. There's a W3C Community Group for it now.

An interesting overview of XML development and alternatives, including MicroXML, can be found in the article “Quo vadis XML?” in the proceedings of the last XML Prague conference in 2013.

Yet another profound paper in a similar vein was presented at Balisage 2013 by Simon St. Laurent, “The Allure of Gothic Markup”, well worth reading. He quotes John Ruskin, who in 1853 (!) wrote:

...go forth again to gaze upon the old cathedral front, where you have smiled so often at the fantastic ignorance of the old sculptors: examine once more those ugly goblins, and formless monsters, and stern statues, anatomiless and rigid; but do not mock at them, for they are signs of the life and liberty of every workman who struck the stone; a freedom of thought, and rank in scale of being, such as no laws, no charters, no charities can secure; but which it must be the first aim of all Europe at this day to regain for her children.

For since the architect, whom we will suppose capable of doing all in perfection, cannot execute the whole with his own hands, he must either make slaves of his workmen in the old Greek, and present English fashion, and level his work to a slave's capacities, which is to degrade it; or else he must take his workmen as he finds them, and let them show their weaknesses together with their strength, which will involve the Gothic imperfection, but render the whole work as noble as the intellect of the age can make it.

To which William Morris added, in 1892:

For the lesson which Ruskin here teaches us is that art is the expression of man's pleasure in labour; that it is possible for man to rejoice in his work, for, strange as it may seem to us to-day, there have been times when he did rejoice in it; and lastly, that unless man's work once again becomes a pleasure to him, the token of which change will be that beauty is once again a natural and necessary accompaniment of productive labour, all but the worthless must toil in pain, and therefore live in pain.

And in 2012, Christopher Alexander (of “A Pattern Language” fame) bitterly observed:

System-A is a system of production in which local adaptation is primary. Its processes are governed by methods that make each building, and each part of each building, unique and uniquely crafted to its context.

System-B is, on the contrary, dedicated to an overwhelmingly machinelike philosophy. The components and products are without individual identity and most often alienating in their psychological effect.

The pressure to use such a system comes mainly from the desire to make a profit, and from the desire to do it at the highest possible speed.

In the spirit of “System-A”, uDoc is a MicroXML application that aims to give tech writers a simpler way to build block-oriented documents, one they can use and understand, and even process, without expert aid. Compared to DITA, uDoc is very permissive; it's descriptive, rather than prescriptive. So it doesn't need hundreds of spec pages to define it; like MicroXML, a few dozen pages are more than enough. uDoc helps you to explain; it doesn't constrain how you do it.

Simon St. Laurent, another XML luminary, suggests that “developers may want to reconsider their style of communications to embrace a wider set of possibilities rather than rushing to restrain them.” And in “Monastic XML” (written in 2002), he proposes this as a general approach to XML markup:

Relying exclusively on the markup contained in a document to interpret its structures (rather than calling out to schemas for additional information) makes documents more portable, reducing the processing mismatches that are easily created with the many layers of XML specifications. Using markup to identify rather than constrain makes it simpler for recipients to interpret the information in a document as they need, in a context which reflects their needs and the relationship between the recipient and the document (and the document's sender) rather than simple obeisance to a fixed and often brittle set of rules.

In a recent thread Simon started on [xml-dev], on “The Allure of Gothic Markup”, Michael Kay wrote:

Which is probably more like the bazaar than the cathedral.

To which Gareth Oakes replied:

This is a good observation, and on that topic, another takeaway for me (which probably reinforces my existing opinions) is that the development of markup standards and systems should not be about an architect imposing a top-down decree on how things should be. Instead, it is about setting up an environment which allows people to work together more effectively.

Simon added:

The “essence of the creativity”, however, is about working with a minimal set of standards and tools to include as much creativity from as many different people as possible by valuing context over standardization.

That's not at all about breaking standards. It's about working with the smallest set of standards that will support the conversation (with the people actually having the conversation in their live contexts) and building appropriately from there.

Markup syntax is a convenient minimal standard for supporting electronic communication. There are useful tools for manipulating it. Standardize and improve the tools for manipulating markup, rather than trying to lock down what is said with markup.

Amen.

1.1 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Alternatives4
Before choosing any documentation process to work with, it's important to look at all the options. No one process fits everyone, even if it seems to be a “standard”. Many standards have come and gone, like the grandfather of structured documentation, SGML.

The first question is, do you want topic-oriented processing, or is a document-oriented method better? The document-oriented processes include xe "DocBook"DocBook, now XML-based, as well as a large number of more proprietary systems, such as those based on FrameMaker and on xe "Arbortext"Arbortext. If all the docs you produce are books for print (or for PDF on-line), you may be better off not trying to fit your use case into a topic-oriented system.

If you do need topic orientation, to enable widespread re-use of documentation parts in varying products, or to keep translation costs down by finer text granularity, or if your deliverables include on-line Help systems, you have many more possibilities to consider, some of which you may never have heard of before. In some areas, there are specialized needs that require industry-specific systems, as for aircraft, pharmaceuticals, and the military. There is also the possibility of designing your own system from the ground up, a very, very, expensive option but still one to consider.

One topic-oriented system that you almost certainly have heard of is Darwin Information Typing Architecture (DITA). Originally developed by IBM for its documentation needs, it has since become an OASIS standard. We at Omni Systems have worked with it very extensively, as the creators of an application heavily used for getting from FrameMaker to DITA (Mif2Go) and a second application for producing on-line Help and Word files from DITA (DITA2Go). We discuss its advantages and disadvantages at length throughout this spec.

We created uDoc largely in response to major shortcomings we saw in DITA, not just in the implementation of some tools (like the DITA-OT), but in the core design itself. We're not the only ones to come to that conclusion. The rest of this spec should give you a very good idea of how uDoc differs from DITA, and why.

There's another markup format with similar design goals to those of uDoc, called xe "Mallard"Project Mallard. The designer of Mallard, Shaun McCance, also started by studying DITA and DocBook, and had many of the same concerns we did. While uDoc supports a lot that Mallard doesn't, like footnotes, variables, indexing, glossaries, abbreviations, and generated lists, we feel Mallard is a worthy effort worth a long look, especially for Linux users, the environment in which it was built.

There is also xe "SPFE"SPFE, pronounced “spiffy” and created by Mark Baker, which is a database-oriented approach to structured documents. It directly inspired the addition of elements that can run queries on external resources in uDoc. This too is worh serious study; see its comparison to DITA.

1.2 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Error Recovery5
xe "errors, recovering from"What if a doc breaks the spec guidelines, and does something with an element that its properties don't allow? For example:

 text

where does not have the text property? The processor (or editor) should wrap the text in an element that does have the text property, by default <p>:

 <p>text</p>

and proceed. The editor can silently insert the element; the processor can warn, but need not. The idea is to help the author move the project along, not make her jump through hoops.

This is a top guiding principle for uDoc. If a processor, or editor, can determine what the author likely intended, it must do whatever it can to further that intention. This is the total opposite of error handling in many XML applications, where non-compliance with any rule causes immediate failure. XML purists may gasp, but we took our cue from the Web, where browsers have used that approach for years. If they had not, there might well be no Web, certainly not one as large and varied as what we have now.

Another example; the uDoc root elements (doc, map, lib) are not supposed to be nested. What if they are? The processor should replace the nested root element with a <div> element, and continue. There's no need to interrupt the writer's workflow when there's an obvious workaround.

It's fine for a processor or editor to issue warnings when it makes such fixes. After all, it may not have guessed the writer's intention correctly. Or the writer might have started with one idea and ended with another, leaving inconsistent markup. So warnings are good, but they must not prevent completion of the task at hand. Imagine the writer's manager standing by the printer waiting for a PDF to emerge to take to a meeting in five minutes. A minor formatting error matters a lot less than having nothing at all.

1.3 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Interoperability 6xe "interoperability"
When considering interoperability, the first question is what, in your own specific business case, do you need to be interoperable with? And for what purposes, exactly?

For example, you as a writer may be getting information on product design and features from SMEs (Subject Matter Experts), and need to send them drafts of what you create for review and comments. Many SMEs use Word to write up their rough specs and would prefer to review in Word with Track Changes on. So you conclude you need interoperability with Word.

Does that mean you need to do your own authoring in Word? No, it doesn't. To begin with, SMEs are not writers, so the text they provide is rarely usable as-is. It takes reorganization and a lot of editing. That means you are unlikely to be able to use any of their original material in Word, so you are just as well off copying and pasting what you can, as plain-text notes, into the tool in which you can work best, such as FrameMaker or an XML editor like oXygen.

What about review? If you use FrameMaker, Mif2Go™ produces top-quality Word docs where you can lock Track Changes on, so that reviewers use their tool and you can easily check their comments when the doc comes back. For DITA, DITA2Go™ does the same thing, as does uDoc2Go™ for uDoc. So it turns out that all the Word interoperability you ever need is provided by a single tool; no need to author in Word.

Suppose that some people in your organization use one form of XML markup, like DocBook, and others use a different form, like DITA. Do you have to use one of those to be interoperable? Not really. There is an endless number of markup languages, with many more to come, but no one form fits all use cases. That is why there are so many of them. As a result, there are also plenty of interchange tools, like Mif2Go, DITA2Go, and uDoc2Go from Omni Systems alone, and many more from other vendors, often free. That means you can author in a format that is designed for you as a tech writer, like uDoc, and don't have to author in a format designed for interchange like DITA.

So uDoc has a much simpler spec than DITA, does not use content models (it has flexible element properties instead), and helps (not just “allows”) you to adjust it to your own authoring use case. You don't have to wear a straitjacket of someone else's idea of what your docs should look like; you can do what in your own professional judgement is best.

But, you may think, you have to nail down every detail in the spec, or you will lose interoperability. Well, no. The thing is, there are (at least) two different kinds of interoperabilty. One we can call the “airplane” type. If you want to replace a part in an airplane, you do have to make sure it is exactly the same, or other parts that depend on it won't work as designed. That is the approach used by DITA; create more and more specs to fit every use case as exactly as possible. Trouble is, that's really an infinite number...

The other type of interoperability is “horse and buggy”. If you need to replace the horse, the new one doesn't have to be the same breed, size, and color; you have a lot of latitude. If necessary, you can use an ox, or a team of sled dogs. You will still get there. That is the approach used by uDoc: explain, don't constrain.

For example, suppose you have created some new elements for your docs. Now you want to send the docs to an OEM customer who intends to rebrand. What happens? If you put the new element definitions in a library of your own, which is referenced in the project root map, you're all set. Even if they use the same element names for something else in their docs, your definitions will prevail for the ones you send them. And if you've used a <variable> for your own branding information, like product name, all they have to do is edit that variable definition in one place.

1.4 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Hierarchies7
We're all used to hierarchical organization for documents. The Table of Contents displays the single document hierarchy, and we select from it the topic we want to read. But that's not how everyone gets into a book. Some will go to the Index first, looking for info specific to their current needs. Some will use on-line search tools when available. Some will use a link someone else sent them to get to a specific point in the doc.

Some documents can logically have multiple hierarchies. Consider a manual for installation, operation, and maintenance of three related products. Do you organize it into Installation, Operation, and Mainerance chapters, with each containing info for all three products? Or do you organize it by Product A, Product B, and Product C, with each containing all the info for its single product? Some users will want it one way, some the other. One of the great benefits of topic orientation is that you can present the same info both ways, without duplicating the source topics.

uDoc provides a few different approaches for multiple hierarchies. If the hierarchies are best represented by different elements applied to the same content, and the elements would naturally overlap elements in other hierarchies, you can use the <start> and <end> tags to create virtual overlapping elements that are still valid MicroXML.

If overlap is not an issue, you can simply use the same doc elements multiple times in the map, under different headings. Each will become a distinct instance and can preferentially link to others in its own group. No need to use hacks like DITA's @copy-to to handle this common use case.

When the information is in a specifically on-line form, there may be no hierarchy at all. Mark Baker focusses on this case, with his “EPPO” (“Every Page is Page One”) concept. Yes, there are still times when sequence matters, as in a step-by-step procedure, but there are plenty of times when it doesn't.

uDoc supports that design with its “query” elements, which can select a set of docs from a directory or database.

A hierarchy is only one way of grouping. Topics may link to each other explicitly, with cross-references, or implicitly, with shared subject tags, like the #hashtags used by Twitter and other on-line social media. uDoc supports both.

Mallard has “Ubiquitous Linking”, where the map-like “guide” pages can show references to topics even if the topics were added to the project after the guide page was finished. If a topic has a link to a guide page, the guide page automatically links back. That works because the new topics are put into a directory that is used just for project files, where during builds all topics in the directory are inspected for links to other topics used in the project.

1.5 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Development7
With DITA, your development process starts by getting your content into an existing mold, usually <concept>, <task>, or <reference>. In that process, you have to give up other possibilities that may fit your use case better. Once you have a valid DITA starting point, you can consider what additional, and different, semantics your situation may require... but by then, you have already lost whatever you had marked in your original docs that didn't fit the DITA mold.

uDoc works the other way. Bring in your existing docs with whatever markup works best for you. If uDoc doesn't have an element that matches one of yours, add yours as a new uDoc element, in a minute or two, and keep going. At any time, add elements, rename them, or eliminate those not needed, very quickly and easily.

uDoc elements are highly amenable to being developed using the evolutionary, incremental, and iterative software development practices in widespread use today, such as “agile” for software development. Start with just the standard elements, then watch for places where a distinct element will capture your semantics better. Consider user stories for doc usage. You may want to add a “List of Tasks”, for example, which will reference <task> elements which you might create from <sect> elements. It's easy.

Here's the <task> element, cloned from <sect> in stdelems.mxl:

 <element name="task" props="doc group sect">
 <usage>Wrapper for a task</usage>
 </element>

Here's the <tasks> element for the list, cloned from <contents> in stdelems.mxl:

 <element name="tasks" props="ref def list doc">
 <usage>Reference to a generated list of tasks</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 <attr name="idref" type="name" default="tasklist"/>
 </element>

Here's the <tasklist> element, cloned from <loflist> in stdlists.mxl:

 <listdef id="tasklist" sort="doc" class="lofitem">
 <usage>Defines a single-level List of Tasks</usage>
 <title>List of Tasks</title>
 <item level="1" elpath="title/task/*" itemclass="tasktitle" />
 </listdef>

That's all you need. Add <tasks> to your root map, where you want it to appear (say, after <contents>), wrap your tasks in <task> elements with distinct @ids, each followed by a <title class="tasktitle">, and you are good to go.

1.6 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Tag Minimization 8xe "tags:minimizing"

xe "short tags:" \t "See "

xe "tags:minimizing"
uDoc is specifically intended for authoring. When writing, you don't want to stop your flow of thought to figure out what tag to use, or to insert it. When editing, you don't want your text broken up into little islands of content in a sea of tags.

In a paper on FtanML from Balisage 2013, Michael Kay commented:

Does verbosity matter? We think it does. The fact that XML is bulky and hard to read is a significant factor leading to the adoption of alternative syntaxes for languages such as RDF and RelaxNG, and is a big turn-off for people coming newly to XSLT. Even if specialist editors can reduce the burden of entering the markup, the amount of noise on the page affects the ability of a human reader to absorb information quickly. This is not to say that the most concise syntax is optimal, of course: we might have swung too far. XML had human readability as one of its goals, and we should remember that readability is not a binary attribute; there are degrees of readability, and readability also depends greatly on the familiarity of the reader with the notation.

So uDoc provides two “shorthands” for tag minimization, one using short tags, the other using symbols, to indicate “events” in the text flow.

Note that some processors, particularly those based on XSLT, may not be able to handle these forms of tag minimization. While uDoc2Go can, including minimization mixed with full tagging in any combination, find out if your processor can too. If not, simply use the free udx utility we provide to convert between full and minimized tags.

The short tags generally have single-letter names, and replace the usual start tag in situations where the end tag location is unambiguous. To keep to XML rules, they are empty tags that specify the start of a particular kind of content, an “event”.

For example, normal table coding might look like this:

<table id="tblfull" cols="3">
<title>My Title</title>
<col width="1in"/><col pos="*" width="2in"/>
<row type="head"><cell>Head 1</cell><cell>Head 2</cell><cell>Head 3</cell></row>
<row><cell>First cell</cell><cell>Second cell</cell><cell>Third cell</cell></row>
<row><cell>Next row</cell><cell>Another cell</cell><cell>Yet more</cell></row>
</table>
But we know that a row ends where the next row starts, or at the end of a table. And we know that a cell ends where the next cell starts, or at the end of the row. So why have all that redundancy? Here is the short-tag alternative:

<table id="tblshort" cols="3">
<t/>My Title
<col width="1in"/><col pos="*" width="2in"/>
<r type="head"/><c/>Head 1<c/>Head 2<c/>Head 3
<r/><c/>First cell<c/>Second cell<c/>Third cell
<r/><c/>Next row<c/>Another cell<c/>Yet more
</table>
For tables, we still keep the outer <table> tags, and the <col> tags, but the rest shrinks dramatically. We use <t/> to start the title, <r/> to start a row, and <c/> to start a cell. It becomes much easier to read the content, which is, after all, the reason the document exists. Here are the two tables, rendered:

Table 1-1 My Title9
	Head 1
	Head 2

	First cell
	Second cell

	Next row
	Another cell

This is the one with short tags:

Table 1-2 My Title 9
	Head 1
	Head 2

	First cell
	Second cell

	Next row
	Another cell

See any difference? No, there isn't one.

For lists, there are two more short tags, <l/> to start a list item and <d/> to start a paragraph in the item. Why have “<d/>”? Because it is mostly used in pair lists for the second member of the pair, the “definition”. The first member, the “term”, uses the short tag for title, “<t/>”. Here is the code for a short pairs list:

<pl>
<l/><t/>First term<t/>A synonym<d/>Common definition
<l/><t/>Second term<d/>First definition<d/>Second definition
<l/><t/>Third term<d/>Its definition
</pl>
And here is the result:

First term

A synonym

Common definition

Second term

First definition

Second definition

Third term

Its definition

Again, no difference in rendering.

In addition to the short tags used in tables and lists, the shorthand symbols are usable throughout the doc text (but not within tags). They can be used anywhere in the text in pairs, as toggles; the first turns on its feature, the second turns it off again. Any still open at the end of a para are closed then, but it's best to use them in pairs, and not depend on that; otherwise, trailing space may be included before the closing symbol if that symbol is not explicit. xe "symbols, shorthand for tags" xe "shorthand symbols for tags" xe "tags:shorthand symbols for"

•
* bold,

•
_ italic, <i>

•
" quote, <q>

•
` code, <tt>

•
^ tag, < >

These symbols are familiar from text email usage (except for code and tag). If you want to use any of them literally, escape them with a backslash. You can also add, remove, and redefine them.

1.7 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Metadata 10xe "metadata elements"

xe "predefined data elements"

xe "data elements:predefined"

xe "elements:data, predefined"
In uDoc, metadata is whatever you want associated with the doc file, in elements with property “data”. The predefined elements include block elements <data>, <author>, <copyright>, and <publisher>; for the last three, @props="data var" so that they are processed as xe "variables:predefined elements processed as"variables for use in the outputs. The inline data element for metadata use is <mark>, with @props="inline data marker". You can easily define as many more as you need to suit your own classification mathods.

As to what to create and how to use them, the creator of SPFE, Mark Baker, recently posted these guidelines on LinkedIn. We couldn't say it better:

I make a distinction between intrinsic and extrinsic metadata. Intrinsic metadata describes the properties of the content itself (for instance, its subject matter). Extrinsic metadata describes how the content is used by or relates to other content (for instance, a location in which it is reused). Intrinsic metadata should be stored with/in the content because it is inseparable from it and does not change when external things change. Extrinsic metadata should be stored separately and point to the content, so that the content does not have to be revised when the extrinsic metadata changes. More on this here.

A file system is not a good place to store metadata, for several reasons, including that it creates an artificial subordination of one metadata field to another, and that is is not portable between storage systems. Content should not become separated from its metadata simply because it is moved to a different location or a different storage architecture.

If you are creating structured content, you are embedding metadata in your content. All structured markup is metadata, down to the smallest element. The metadata created by markup includes metadata about the whole of the document (such as its document type) and metadata about parts of it. To carve off some of the metadata about the whole of the document into a different storage location creates an artificial divide that inhibits effective querying of your content set. (Unless you are using a storage medium that makes it impossible to query XML structures in your content, in which case you are using the wrong storage medium.) More on this here.

Metadata is useless unless it accurately describes the content. If your metadata is in any way structured, therefore, it actually forms a specification for the content. That is, you don't simply let the author write anything they want and then hunt around for the closest metadata label that sort of fits. You define the purpose of the topic in terms of the metadata to be applied to it. The metadata defines the purpose, role, and function of the topic, and is therefore the definition of what the writer is supposed to accomplish. The writer should therefore create the metadata first so that they know exactly what content they are supposed to produce. More on that here.

The organization of content is based on metadata. When you create small collections, like an individual book or help system, you can rely on implicit metadata that exists in your head as the author of the content. When you contribute content to a larger collection, whether that be the repository of a big reuse system, or whether it be publishing a topic on the Web, the organization is done by someone or something else -- a person or an algorithm. Either of these, but especially the algorithm, require metadata to be made explicit.

When you organize content top-down, as in a book or a typical help system, the organization is itself metadata, though you may not think of it as such. But when your content becomes part of a system that requires bottom-up organization, the bottom-up organization is driven by metadata, which must be explicit to be effective. More on that here.

1.8 SEQ C3 \r0 \h

SEQ C4 \r0 \h

SEQ C5 \r0 \h uDoc Element Types 11xe "element types"
uDoc provides three major kinds of elements, all easily modified: block, text, and inline.

•
Block elements provide structure. They can contain other block elements and text elements without restriction, but cannot contain text itself or inline elements.

•
Text elements provide content. They can contain plain text and inline elements, but not block elements or other text elements.

•
Inline elements provide fine-grain control of text content. They can contain only plain text and other inline elements.

These simple rules solve a problem that dates back to SGML, which Norman Walsh, the creator of DocBook, calls xe "pernicious mixed content"“pernicious mixed content”, where an element contains both block elements and text. The issue is with xe "whitespace"whitespace (spaces, tabs, and returns). Block elements are often surrounded by whitespace, to prevent overlong lines and to show nesting level with indentation. So if they are mixed with text, is the whitespace preserved in outputs, as is needed for text, or not? There is no clear answer. Ensuring that text and block elements are never mixed in the same wrapper element solves it cleanly.

Note: Authors are not required to use text elements explicitly if the processor can determine where they should start and end from the content. So processors should surround “pernicious” text in block elements with <p>...</p> tags, so that the block element contains a text element, not text directly. This makes what processors should do with whitespace simple: start the <p> after any leading whitespace, and end it before any trailing whitespace.

Block elements are one of six subtypes: root, group, structure, data, reference, and definition. 11xe "element types:block"

xe "block element types"
Root elements determine the kind of document they contain, doc, map, or lib: xe "root elements" xe "block element types:root"

•
<doc> is a unit of content like a DITA topic, the basic building block, and is not nestable

•
<map> organizes a set of docs into a project, containing refs to docs and other maps, and project metadata

•
<lib> is a library, a place to store text content and defs for re-use in docs and maps

Group elements include <div>, <branch>, <sect>, <comment>, and <doctext>: xe "group elements" xe "block element types:group"

•
<div> groups but does not contribute to the content hierarchy, so it can be used to wrap sibling elements as well as children

•
<branch> is used in maps to identify a part of the map (contained elements and their children) that is to be processed as a self-contained entity to the degree possible

•
<sect> is a nestable section containing text elements (but not text directly)

•
<comment> is for reviewers, containing •
<author>, •
<date>, and text elements.

•
It is not rendered by default, so it also allows “commenting out” draft content that is not ready for publication, without actually deleting it.

•
<doctext> in maps hss content to be appended to the previous topic, for transitions

•
<udx> groups without affecting the hierarchy, to specify •
exceptions for udx processing

Structure elements include <table>, <fig>, lists, and <note>: xe "structure elements" xe "block element types:structure"

•
<table> contains col, row, and cell

•
<fig> contains image, imagemap, object, and param

•
list: (unordered), (ordered), <sl> (simple), or <pl> (pairs), contains items

•
<note> has a •
<title>, one or more paragraphs, and can have an image, for warnings and the like

Data elements contain metadata, not intended for display as is, such as publication information like ISBN and milestone dates for a project. A processor should make the data element info available for use in assembled content such as a title page. The data elements include <data>, <author>, <copyright>, <publisher>, <date>, <alias>, <code>, <start>, and <end>: xe "data elements" xe "block element types:data"

•
<data> contains info that is not to be rendered

•
<author> has names and other related info

•
<copyright> (or copyleft) identifies restrictions on distribution

•
<publisher> has name and contact info

•
<date> info is in yyyy-mm-dd format

•
<alias> is used for CSH (Context-Sensitive Help) addressing

•
<code> suggests code to use for its parent, usually a def

•
<start> and •
<end> define a range that can cross element boundaries, effectively providing overlapping virtual elements

Reference elements point to content defined elsewhere that is to be incorporated. They nest and do thereby contribute to the content hierarchy in maps. They include <ref>, <textref>, <coderef>, <docref>, <mapref>, <defref>, <elemref>, <condref>, <varref>, <keyref>, <relref>, and <doclist>: xe "reference elements" xe "block element types:reference"

•
<ref> is for general-purpose use

•
<defref> applies a def or set of defs to the current doc or project

•
<dirref> brings in files matching @query in the directory named in @src or @key

•
<dbref> applies @query to the contents of the database named in @src or @key

•
<webref> sends @query to the search engine named in @src or @key

•
These are used in docs:

◦
<textref> provides block text transclusion (like DITA conrefs)

◦
<coderef> handles preformed code transclusion (supports ◦
RFC 5147)

◦
<relref> identifies the subject groups the doc belongs to

•
These are used only in maps:

◦
<docref> brings in a ◦
<doc> file, either via ◦
@src or ◦
@key

◦
<mapref> brings in another ◦
<map> file, either via ◦
@src or ◦
@key

◦
<fileref> brings in a file in final format, either via ◦
@src or ◦
@key

◦
<codedocref> brings in a file as plain text, with the file name as the ◦
<title>

◦
<elemref> adds new ◦
<element> defs to the current project

◦
<condref> applies a set of ◦
<conditions>, like DITA ditavals

◦
<varref> specifies a library to check for ◦
<variable> definitions

◦
<keyref> specifies a library to check for ◦
<key> definitions

◦
<glossref> specifies a library to check for ◦
<glossary> definitions

◦
<doclist> identifies a generated list to use. Predefined doclists include ◦
<contents>, ◦
<figures>, ◦
<tables>, ◦
<index>, and ◦
<glossary>.

Definition elements define reusable content such as external resources. They include <def>, <cond>, <element>, <variable>, <key>, <output>, <genlist>, <glossdef>, and <tset>:xe "definition elements" xe "block element types:definition"

•
<def> is for general-purpose use

•
<key> has •
@keys and •
@src, and can also specify another •
@key, possibly in a different •
@project

•
<tset> defines tab stops for use within the contained text elements

•
These are used only in maps:

◦
<conditions> defines a set of conditions for the current scope, such as ◦
<map> or ◦
<branch>

◦
<output> contains definitions (or references to them) specific to an output type

•
These are used only in libraries:

◦
<element> has ◦
@name and ◦
@props, and contains ◦
<usage> and ◦
<attr>s

◦
<variable> has ◦
@id and one or more text elements

◦
<genlist> defines the ◦
@sort and items for a generated list such as an LOF or LOT

◦
<glossdef> defines a ◦
<glossary> item, used when generating a ◦
<glossary>

Text elements can be in a block element, and are one of several types: <p>, <pre>, <title>, <usage>, <quote>, <cite>, <desc>, <alt>, and <area>. They can contain text and inline elements, but not block or other text elements: 13xe "element types:text"

xe "text element types"
•
<p> is a paragraph, the primary text component.

•
Whitespace within it is normalized to a single space in text, retaining a single space if present before and after any inline elements that provide text; leading and trailing space is trimmed off

•
<pre> is also a paragraph, but it retains all whitespace.

•
It is for preformatted text such as code samples. If there is whitespace before the pre tag itself, that sets the left margin for the following text, so that the <pre> element can be indented to show nesting like any other block or text element

•
<title> is a paragraph used to provide the content for refs to its containing block

•
<usage> is a short paragraph used in defs for a readable description of purpose

•
<quote> is a paragraph used to represent one or more full paragraphs of quoted content

•
<cite> identifies the source of a •
<quote> or •
<comment>

•
<desc> is a paragraph description for an •
<object>, •

 </fig>

 <table class="table_format">
 <title>Table Title</title>
 <desc>This is an example of table markup.</desc>
 <col width="20" />
 <col width="50" />
 <row type="head">
 <cell>First col head</cell>
 <cell>Second col head</cell>
 </row>
 <row type="body">
 <cell>First col</cell>
 <cell>Second col</cell>
 </row>
 <row type="foot">
 <cell>First col foot</cell>
 <cell>Second col foot</cell>
 </row>
 </table>
 </sect>

 <relref subjects="files" />

</doc>

B.3 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h uDoc Lib File 53xe "library files:example"
This is what a uDoc library file might look like:

<lib id="ud_lib_file">

 <title>Library for uDoc spec</title>
 <title>Last updated July 12, 2013</title>

 <note><p>Before making changes to this library, always check with the
Publications
 person in charge of it: <xref src="mailto:marci@example.com">Marcia Hamilton</xref></p></note>

 <!-- the library contains the project's definitions;
 the ones to use are those referenced from the map
 -->

 <!-- define keys with the file and optionally element referenced -->
 <div id="projectkeys">
 <key keys="onekey" src="filename.xml" idref="elemid" />
 <!-- if keys are in another project, redirect to it with optional key rename -->
 <key keys="foreignkey" key="keyinproj" project="projmap.mxm" />
 </div>

 <!-- define sets of conditions based on attributes and boolean values -->
 <conditions id="udoc_experts">
 <cond attr="audience" include="((expert or admin) and not novice)"/>
 <cond attr="product" exclude="(d2g or m2g) and not udoc"/>
 </conditions>

 <conditions id="udoc_novices">
 <cond attr="audience" exclude="((expert or admin) and not novice)"/>
 <cond attr="product" exclude="(d2g or m2g) and not udoc"/>
 </conditions>

 <conditions id="unconditional"/>

 <!-- define variables for use in this project -->
 <div id="projectvars">
 <variable id="company">Omni Systems</variable>
 <variable id="ud">uDoc</variable>
 </div>

 <!-- define a new element -->
 <div id="newelements">
 <element name="keyword" props="text inline gloss" >
 <usage>Use this element to identify a term in a specific glossary</usage>
 <attr name="glossary" type="file" />
 </element>
 </div>

</lib>

Appendix C. SEQ A2 \r0 \h

SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h

SEQ A6 \r0 \h

SEQ A7 \r0 \h

SEQ A8 \r0 \h Standard uDoc Libraries 55xe "library files:standard"
This Appendix contains all the standard uDoc library files, shown as preformatted code. It was produced using the dirref:

 <dirref src="C:\omsys\x2g\lib" query="*.mxl" results="codedocref" />

C.1 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h localattrs.mxl55

<lib id="localattrs">

<!-- localattrs.mxl describes local overrides for standard uDoc element attributes -->
<!-- Version 0.1, December 29, 2013 -->

<!-- All elements have an implied attribute set in:
 <defref src="stdattrs.mxl" idref="CommonAttrs" />
 If an attr there is redefined in the element, the
 redefinition prevails. -->

<div type="def" id="CommonAttrs">

</div>

</lib>

C.2 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h localelems.mxl55

<lib id="localelems">

<!-- localelems.mxl describes local overrides for standard uDoc elements -->
<!-- Version 0.1, December 29, 2013 -->

<!-- Template for new elements:
 <element name="elementname" props="list of element props">
 <usage>Brief description</usage>
 <attr name="attrname" type="attrval type"/>
 </element>

 All elements have an implied attribute set in:
 <defref src="stdattrs.mxl" idref="CommonAttrs"/>
 If an attr there is redefined in the element, the
 redefinition prevails. -->

</lib>

C.3 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h stdabbrs.mxl56

<lib id="stdabbrs">

<!-- stdabbrs.mxl describes the standard uDoc abbreviations -->
<!-- Version 0.1, July 17, 2013 -->
<!-- Template:

<abbreviation id="">
<title></title>
<p></p>
</abbreviation>

-->

<abbreviation id="dita">
<title>DITA</title>
<p>Darwin Information Typing Architecture</p>
</abbreviation>

<abbreviation id="ditaot">
<title>OT</title>
<p>DITA Open Toolkit</p>
</abbreviation>

<abbreviation id="omni">
<title>Omni</title>
<p>Omni Systems</p>
</abbreviation>

<abbreviation id="csh">
<title>CSH</title>
<p>Context-Sensitive Help</p>
</abbreviation>

<abbreviation id="svg">
<title>SVG</title>
<p>Scalable Vector Graphics</p>
</abbreviation>

</lib>

<!-- end of stdabbrs.mxl -->

C.4 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h stdattrs.mxl57

<lib id="stdattrs">

<!-- stdattrs.mxl describes the standard uDoc element attributes -->
<!-- Version 0.1, July 2, 2013 -->

<!-- All elements have an implied attribute set in:
 <defref src="stdattrs.mxl" idref="CommonAttrs" />
 If an attr there is redefined in the element, the
 redefinition prevails. -->

<!-- used for all elements -->
<div type="def" id="CommonAttrs">
 <!-- identification and categorization -->
 <attr name="name" type="name" />
 <attr name="id" type="name" />
 <attr name="type" type="text" />
 <attr name="class" type="name" />
 <attr name="sort" type="name" />
 <attr name="importance" type="name" />
 <attr name="lang" type="lang" />
 <attr name="toc" type="bool" />
 <attr name="search" type="bool" />
 <attr name="translate" type="bool" />

 <!-- conditional processing -->
 <attr name="cond" type="name" />
 <attr name="audience" type="name" />
 <attr name="product" type="name" />
 <attr name="version" type="name" />

 <!-- referencing -->
 <attr name="src" type="url" />
 <attr name="idref" type="name" />
 <attr name="idrefs" type="elist" />
 <attr name="key" type="name" />
 <attr name="project" type="url" />
 <attr name="output" type="enum: RTF WinHelp HTML XHTML XML DITA DocBook Eclipse HTMLHelp JavaHelp OmniHelp OracleHelp DCL MIF PDF Print uDoc" />
 <attr name="branch" type="name" />
</div>

<!-- used for cond elements -->
<attr name="attr" type="name" />
<attr name="include" type="bool" />
<attr name="exclude" type="bool" />
<attr name="flag" type="bool" />

<!-- used for tables -->
<attr name="order" type="enum: row col" default="row"/>
<attr name="rows" type="num"/>
<attr name="cols" type="num"/>
<attr name="width" type="size"/>

<!-- used for table cols -->
<attr name="pos" type="nlist" />
<attr name="type" type="enum: body head"/>
<attr name="width" type="size" />

<!-- used for table rows -->
<attr name="pos" type="nlist" />
<attr name="type" type="enum: body head foot"/>
<attr name="height" type="size" />

<!-- used for table cells -->
<attr name="colspan" type="num" />
<attr name="rowspan" type="num" />
<attr name="align" type="enum: left center right" default="lefy" />
<attr name="valign" type="enum: top middle bottom" default="top" />

<!-- used for image and img -->
<attr name="width" type="size" />
<attr name="height" type="size" />
<attr name="depth" type="size" />
<attr name="top" type="size" />
<attr name="left" type="size" />
<attr name="alt" type="text"/>

<!-- used for fig, imagemap, and object -->
<attr name="width" type="size" />
<attr name="height" type="size" />

<!-- used for area in imagemap -->
<attr name="shape" type="enum: rect poly circle" default="rect"/>
<attr name="coords" type="nlist" default="0,0,0,0"/>

<!-- used for code -->
<attr name="language" type="name" />

<!-- used for ul lists -->
<attr name="styletype" type="enum: disc circle square none" default="disc"/>

<!-- used for ol lists -->
<attr name="styletype" type="enum: decimal upper-alpha lower-alpha
 upper-roman lower-roman" default="decimal"/>

<!-- used for index -->
<attr name="start" type="name"/>
<attr name="end" type="name"/>
<attr name="see" type="name"/>
<attr name="seealso" type="name"/>

<!-- used for docref and doclist -->
<attr name="start" type="enum: none page file" default="none"/>

<!-- used for relref -->
<attr name="groups" type="elist"/>
<attr name="subjects" type="elist"/>
<attr name="weight" type="num"/>

<!-- used for dirref, dbref, and webref -->
<attr name="query" type="query" />
<attr name="results" type="epath"/>

<!-- used for element -->
<attr name="props" type="elist"/>
<attr name="short" type="name"/>
<attr name="full" type="name"/>
<attr name="wiki" type="text"/>

<!-- used for wiki -->
<attr name="props" type="elist"/>
<attr name="symbol" type="text"/>
<attr name="tag" type="name"/>
<attr name="space" type="enum: yes no"/>
<attr name="code" type="enum: no yes set"/>
<attr name="sch" type="text"/>
<attr name="ech" type="text"/>

<!-- used for attr -->
<attr name="default" type="text"/>

<!-- used for key -->
<attr name="keys" type="elist"/>

<!-- used for listdef -->
<attr name="sort" type="enum: doc alpha numeric" default="doc"/>

<!-- used for listdef items -->
<attr name="level" type="num" default="1" />
<attr name="elpath" type="epath" />
<attr name="itemclass" type="name" default="" />

<!-- used for tset (HTML <pre> tab definitions) -->
<attr name="t*" type="tval" />

<!-- used for udx -->
<attr name="switch" type="enum: none nomin nofull normal"/>

</lib>

<!-- end of stdattrs.mxl -->

C.5 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h stdelems.mxl60

<lib id="stdelems">

<!-- stdelems.mxl describes the standard uDoc elements -->
<!-- Version 0.1, July 3, 2013 -->

<!-- Template for new elements:
 <element name="elementname" props="list of element props">
 <usage>Brief description</usage>
 <attr name="attrname" type="attrval type"/>
 </element>

 All elements have an implied attribute set in:
 <defref src="stdattrs.mxl" idref="CommonAttrs"/>
 If an attr there is redefined in the element, the
 redefinition prevails. -->

<!-- Root elements: -->

 <element name="doc" props="root doc">
 <usage>Root element for mxl documents, .mxd</usage>
 </element>

 <element name="map" props="root map">
 <usage>Root element for mxl maps, .mxm</usage>
 </element>

 <element name="lib" props="root lib">
 <usage>Root element for mxl libraries, .mxl</usage>
 </element>

<!-- Block elements: -->

 <element name="div" props="group nolevel">
 <usage>Grouping without affecting level</usage>
 </element>

 <element name="branch" props="map group nolevel">
 <usage>Named group in a map without affecting level</usage>
 </element>

 <element name="sect" props="doc group sect">
 <usage>Group in a doc that nests to increase level</usage>
 </element>

 <element name="udx" props="doc group nolevel">
 <usage>Group that requires different udx processing</usage>
 <attr name="switch" type="enum: none nomin nofull normal"/>
 </element>

 <element name="table" props="doc table start">
 <usage>Table with rows and columns</usage>
 <attr name="order" type="enum: row col" default="row"/>
 <attr name="rows" type="num"/>
 <attr name="cols" type="num"/>
 <attr name="width" type="size"/>
 </element>

 <element name="col" props="doc table col">
 <usage>Table column properties, and cells if order is col</usage>
 <attr name="pos" type="nlist" />
 <attr name="type" type="enum: body head"/>
 <attr name="width" type="size"/>
 </element>

 <element name="row" short="r" props="doc row">
 <usage>Table row properties, and cells if order is row</usage>
 <attr name="pos" type="nlist" />
 <attr name="type" type="enum: body head foot"/>
 <attr name="height" type="size"/>
 </element>

 <element name="r" full="row" props="doc row short">
 <usage>Table row properties, and cells if order is row</usage>
 <attr name="pos" type="nlist" />
 <attr name="type" type="enum: body head foot"/>
 <attr name="height" type="size"/>
 </element>

 <element name="cell" short="c" props="doc cell">
 <usage>Table cell properties and content</usage>
 <attr name="colspan" type="num"/>
 <attr name="rowspan" type="num"/>
 <attr name="align" type="enum: left center right"/>
 <attr name="valign" type="enum: top middle bottom"/>
 </element>

 <element name="c" full="cell" props="doc cell short">
 <usage>Table cell properties and content</usage>
 <attr name="colspan" type="num"/>
 <attr name="rowspan" type="num"/>
 <attr name="align" type="enum: left center right"/>
 <attr name="valign" type="enum: top middle bottom"/>
 </element>

 <element name="fig" props="doc fig">
 <usage>Figure properties and content</usage>
 <attr name="width" type="size"/>
 <attr name="height" type="size"/>
 </element>

 <element name="image" props="doc image">
 <usage>Block image, used in fig or alone</usage>
 <attr name="alt" type="text"/>
 <attr name="width" type="size"/>
 <attr name="height" type="size"/>
 <attr name="top" type="size" />
 <attr name="left" type="size" />
 </element>

 <element name="imagemap" props="doc fig image ref group">
 <usage>Image map, has image and areas that provide text and links</usage>
 <attr name="width" type="size"/>
 <attr name="height" type="size"/>
 </element>

 <element name="object" props="doc object">
 <usage>Displayable or audible object, used in fig</usage>
 <attr name="width" type="size"/>
 <attr name="height" type="size"/>
 </element>

 <element name="ul" props="doc list start">
 <usage>Unordered list of items</usage>
 <attr name="styletype" type="enum: disc circle square none"/>
 </element>

 <element name="ol" props="doc list start num">
 <usage>Ordered list of items</usage>
 <attr name="styletype" type="enum: decimal upper-alpha
 lower-alpha upper-roman lower-roman"/>
 </element>

 <element name="sl" props="doc list start sub">
 <usage>List of items without bullets or numbers</usage>
 </element>

 <element name="pl" props="doc list start plist">
 <usage>List of item pairs each with title(s) and text element(s)</usage>
 </element>

 <element name="li" short="l" props="doc list item">
 <usage>List items, within list, ul, or ol</usage>
 <attr name="type" type="enum: body head"/>
 </element>

 <element name="l" full="li" props="doc list item short">
 <usage>Short form for List items</usage>
 <attr name="type" type="enum: body head"/>
 </element>

 <element name="note" props="doc note">
 <usage>Note with title, paragraphs, and image</usage>
 <attr name="type" type="enum: note Attention Caution Danger Fastpath
 Important Remember Restriction Tip Warning Other" default="note"/>
 </element>

 <element name="comment" props="comment">
 <usage>Reviewer's comments or draft content</usage>
 </element>

 <element name="doctext" props="doc map para">
 <usage>Transitional text in a map used in the preceding topic</usage>
 <attr name="type" type="enum: end start before after replace"/>
 </element>

<!-- Text elements: -->

 <element name="p" short="(pl/li) d" props="text para">
 <usage>Normal paragraph</usage>
 </element>

 <element name="pre" props="text para pre">
 <usage>Preformatted paragraph, preserves spaces and line ends</usage>
 </element>

 <element name="title" short="(pl/li table) t" props="text para title">
 <usage>Title paragraph, used in xrefs to its parent</usage>
 <attr name="type" type="enum: main nav search xref rel special"/>
 </element>

 <element name="subtitle" props="text para title sub">
 <usage>Subtitle paragraph, usually follows a title</usage>
 </element>

 <element name="t" full="title" props="text para title short">
 <usage>Title paragraph, short tag</usage>
 </element>

 <element name="d" full="p" props="text para short">
 <usage>Normal paragraph in list, short tag</usage>
 </element>

 <element name="usage" props="text para usage">
 <usage>Short paragraph describing usage of its parent</usage>
 </element>

 <element name="quote" props="text para quote">
 <usage>Full paragraph quotation, language-specific</usage>
 </element>

 <element name="cite" props="text para quote sub">
 <usage>Citation for quotation or comment</usage>
 </element>

 <element name="desc" props="text para desc">
 <usage>Paragraph description for an object, image, table (for mouseover)</usage>
 </element>

 <element name="alt" props="text image alt">
 <usage>Alternate text for an image</usage>
 </element>

 <element name="area" props="text image ref">
 <usage>Clickable area within an image map</usage>
 <attr name="shape" type="enum: rect poly circle" default="rect"/>
 <attr name="coords" type="nlist"/>
 </element>

<!-- Inline elements, all names 1-4 chars: -->

 <element name="ph" props="inline text">
 <usage>Phrase, used for spans in text usually with a @class</usage>
 </element>

 <element name="term" props="inline text gloss">
 <usage>Term that links to a glossary entry</usage>
 </element>

 <element name="abbr" props="inline text abbr">
 <usage>Term processed as an abbreviation</usage>
 </element>

 <element name="tm" props="inline text tmark">
 <usage>Term processed as a trademark or service mark</usage>
 <attr name="type" type="enum: trade service other" default="trade"/>
 </element>

 <element name="xref" props="inline text ref">
 <usage>Cross reference or link, optional text content</usage>
 <attr name="type" type="enum: title number"/>
 </element>

 <element name="seq" props="inline text seq">
 <usage>Sequence of keys, menu items, etc.</usage>
 <attr name="type" type="enum: keys menu action"/>
 </element>

 <element name="mark" props="inline data marker">
 <usage>Identifies a point in the text, any content not rendered</usage>
 <attr name="value" type="text" />
 </element>

 <element name="idx" props="inline data text index">
 <usage>Index entry, may have range start/end, see, seealso</usage>
 <attr name="start" type="name"/>
 <attr name="end" type="name"/>
 <attr name="see" type="name"/>
 <attr name="seealso" type="name"/>
 </element>

 <element name="var" props="inline text var">
 <usage>Reference to a variable def, fallback text content</usage>
 </element>

 <element name="img" props="inline doc image">
 <usage>Inline image, used in text for symbol or icon</usage>
 <attr name="width" type="size"/>
 <attr name="height" type="size"/>
 <attr name="top" type="size" />
 <attr name="left" type="size" />
 <attr name="alt" type="text"/>
 </element>

 <element name="fn" props="inline text fnote">
 <usage>Footnote or endnote</usage>
 <attr name="type" type="enum: foot table end" default="foot"/>
 </element>

 <element name="br" props="inline break">
 <usage>Break</usage>
 <attr name="type" type="enum: line column page" default="line"/>
 </element>

 <element name="t1" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t2" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t3" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t4" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t5" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t6" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t7" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t8" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t9" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t10" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t11" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t12" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t13" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t14" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t15" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t16" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t17" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t18" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t19" props="inline tab">
 <usage>Tab</usage>
 </element>

 <element name="t20" props="inline tab">
 <usage>Tab</usage>
 </element>

<!-- Typographic elements: -->

 <element name="b" wiki="*" props="inline text typo">
 <usage>Bold</usage>
 <code language="css">font-weight: bold;</code>
 </element>

 <element name="i" wiki="_" props="inline text typo">
 <usage>Italic</usage>
 <code language="css">font-style: italic;</code>
 </element>

 <element name="u" props="inline text typo">
 <usage>Underline</usage>
 <code language="css">text-decoration: underline;</code>
 </element>

 <element name="du" props="inline text typo">
 <usage>Double Underline</usage>
 <code language="rtf">uldb</code>
 </element>

 <element name="o" props="inline text typo">
 <usage>Overline</usage>
 <code language="css">text-decoration: overline;</code>
 </element>

 <element name="s" props="inline text typo">
 <usage>Strikethrough</usage>
 <code language="css">text-decoration: line-through;</code>
 </element>

 <element name="sup" props="inline text typo">
 <usage>Up, superscript</usage>
 <code language="css">vertical-align: super;</code>
 </element>

 <element name="sub" props="inline text typo">
 <usage>Down, subscript</usage>
 <code language="css">vertical-align: sub;</code>
 </element>

 <element name="tt" wiki="`" props="inline text typo">
 <usage>TeleType, monospaced</usage>
 <code language="css">font-family: monospace;</code>
 <code language="html">tt</code>
 </element>

 <element name="q" wiki=""" props="inline text typo">
 <usage>Inline Quote, language-dependent</usage>
 <code language="html">q</code>
 </element>

<!-- Wiki shorthand inline elements -->

 <wiki symbol="*" full="b" props="inline text typo"
 tag="b" code="no" />

 <wiki symbol="_" full="i" props="inline text typo"
 tag="i" code="no" />

 <wiki symbol=""" full="q" props="inline text typo"
 tag="q" code="no" />

 <wiki symbol="`" full="tt" props="inline text typo"
 tag="tt" space="no" code="set" />

 <wiki symbol="^" full="tt < >" props="inline text typo"
 tag="tt" sch="<" ech=">" space="no" code="set" />

<!-- Data elements: -->

 <element name="data" props="data">
 <usage>Data, not rendered</usage>
 </element>

 <element name="start" props="data elem start">
 <usage>Start of overlapping element (empty)</usage>
 </element>

 <element name="end" props="data elem">
 <usage>End of overlapping element (empty)</usage>
 </element>

 <element name="author" props="data var">
 <usage>Author name, metadata</usage>
 </element>

 <element name="copyright" props="data var">
 <usage>Copyright info, metadata</usage>
 </element>

 <element name="publisher" props="data var">
 <usage>Publisher info, metadata</usage>
 </element>

 <element name="date" props="data date">
 <usage>Date info, metadata</usage>
 </element>

 <element name="alias" props="data csh">
 <usage>Context-Sensitive Help anchor</usage>
 </element>

 <element name="code" props="data code">
 <usage>Code to use for parent, usually a def</usage>
 <attr name="language" type="name"/>
 </element>

<!-- Reference elements: -->

 <element name="ref" props="ref">
 <usage>Reference, general purpose</usage>
 </element>

 <element name="textref" props="ref elem nolevel">
 <usage>Text reference, for transclusion (conref)</usage>
 </element>

 <element name="coderef" props="ref pre">
 <usage>Code reference, for transclusion (codeblock)</usage>
 </element>

 <element name="relref" props="ref file rel">
 <usage>Reference related docs by group membership</usage>
 <attr name="groups" type="elist"/>
 <attr name="subjects" type="elist"/>
 <attr name="weight" type="num"/>
 </element>

 <element name="dirref" props="ref dir nolevel">
 <usage>Directory query reference</usage>
 <attr name="query" type="query" />
 <attr name="results" type="epath"/>
 </element>

 <element name="dbref" props="ref db nolevel">
 <usage>Database query reference</usage>
 <attr name="query" type="query" />
 <attr name="results" type="epath"/>
 </element>

 <element name="webref" props="ref web nolevel">
 <usage>Search-engine query reference</usage>
 <attr name="query" type="query" />
 <attr name="results" type="epath"/>
 </element>

<!-- Reference elements used in maps: -->

 <element name="docref" props="ref map doc file">
 <usage>Doc reference</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 </element>

 <element name="codedocref" props="ref map doc file pre">
 <usage>Doc reference</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 </element>

 <element name="preface" props="ref map doc file">
 <usage>Doc reference to a preface</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 </element>

 <element name="chapter" props="ref map doc file">
 <usage>Doc reference to a chapter</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 </element>

 <element name="appendix" props="ref map doc file">
 <usage>Doc reference to an appendix</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 </element>

 <element name="mapref" props="ref map file nolevel">
 <usage>Map reference</usage>
 </element>

 <element name="fileref" props="ref map file ext">
 <usage>Preprocessed file reference</usage>
 </element>

 <element name="defref" props="ref def">
 <usage>Apply a definition or set of definitions</usage>
 </element>

 <element name="elemref" props="ref def elem">
 <usage>Add new element definitions</usage>
 </element>

 <element name="keyref" props="ref key">
 <usage>Specify a set of key definitions to use</usage>
 </element>

 <element name="condref" props="ref cond">
 <usage>Apply a condition or set of conditions</usage>
 </element>

 <element name="varref" props="ref var">
 <usage>Specify a library for variable definitions</usage>
 </element>

 <element name="glossref" props="ref gloss">
 <usage>Specify a library for glossary definition entries</usage>
 </element>

 <element name="abbrref" props="ref abbr">
 <usage>Specify a library for abbreviation definition entries</usage>
 </element>

 <element name="tmarkref" props="ref tmark">
 <usage>Specify a library for trademark definition entries</usage>
 </element>

<!-- Generated list reference elements: -->

 <element name="doclist" props="ref def list">
 <usage>Reference a generated list to use in a map</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 </element>

 <element name="contents" props="ref def list doc">
 <usage>Reference to a generated table of contents</usage>
 <attr name="start" type="enum: none page file" default="none"/>
 <attr name="idref" type="name" default="toclist"/>
 </element>

 <element name="figures" props="ref def list fig">
 <usage>Reference to a generated list of figures</usage>
 <attr name="start" type="enum: none page file" default="file"/>
 <attr name="idref" type="name" default="loflist"/>
 </element>

 <element name="tables" props="ref def list table">
 <usage>Reference to a generated list of tables</usage>
 <attr name="start" type="enum: none page file" default="file"/>
 <attr name="idref" type="name" default="lotlist"/>
 </element>

 <element name="index" props="ref def list index">
 <usage>Reference to a generated index list</usage>
 <attr name="start" type="enum: none page file" default="file"/>
 <attr name="idref" type="name" default="subjectindex"/>
 </element>

 <element name="glossary" props="ref def list gloss">
 <usage>Reference to a generated glossary list</usage>
 <attr name="start" type="enum: none page file" default="file"/>
 <attr name="idref" type="name" default="glosslist"/>
 </element>

 <element name="abbreviations" props="ref def list abbr">
 <usage>Reference to a generated abbreviation list</usage>
 <attr name="start" type="enum: none page file" default="file"/>
 <attr name="idref" type="name" default="abbrlist"/>
 </element>

 <element name="trademarks" props="ref def list tmark">
 <usage>Reference to a generated trademark list</usage>
 <attr name="start" type="enum: none page file" default="file"/>
 <attr name="idref" type="name" default="tmarklist"/>
 </element>

<!-- Definition elements: -->

 <element name="def" props="def">
 <usage>Definition, general purpose</usage>
 </element>

 <element name="output" props="def output">
 <usage>Define a project output type, contains refs to its related defs</usage>
 <attr name="type" type="bool"/>
 </element>

 <element name="conditions" props="def cond group">
 <usage>Define a set of conditions, contains cond elements</usage>
 </element>

 <element name="cond" props="def cond">
 <usage>Define a condition in a conditions element</usage>
 <attr name="attr" type="name"/>
 <attr name="include" type="bool"/>
 <attr name="exclude" type="bool"/>
 <attr name="flag" type="bool"/>
 </element>

 <element name="element" props="def elem">
 <usage>Define an element to use in the current scope</usage>
 <attr name="props" type="elist"/>
 <attr name="short" type="name"/>
 <attr name="full" type="name"/>
 <attr name="wiki" type="text"/>
 </element>

 <element name="attr" props="def elem attr">
 <usage>Specifies attributes in an element definition</usage>
 <attr name="default" type="text"/>
 </element>

 <element name="syn" props="def syn">
 <usage>Specifies a synonym for the current definition</usage>
 <attr name="lang" type="lang"/>
 </element>

 <element name="wiki" props="def elem">
 <usage>Define a symbol to use in wiki shorthand</usage>
 <attr name="props" type="elist"/>
 <attr name="symbol" type="text"/>
 <attr name="tag" type="name"/>
 <attr name="space" type="enum: yes no"/>
 <attr name="code" type="enum: no yes set"/>
 <attr name="sch" type="text"/>
 <attr name="ech" type="text"/>
 </element>

 <element name="variable" props="def var">
 <usage>Defines a variable with text content</usage>
 </element>

 <element name="key" props="def doc key ref">
 <usage>Defines a key, possibly as a key in another project</usage>
 <attr name="keys" type="elist"/>
 </element>

 <element name="genlist" props="def list">
 <usage>Defines a generated list to use in a map</usage>
 <attr name="sort" type="enum: doc alpha numeric" default="doc"/>
 </element>

 <element name="item" props="def list item">
 <usage>Specifies an item in a generated list definition</usage>
 <attr name="level" type="num" default="1"/>
 <attr name="elpath" type="epath"/>
 <attr name="itemclass" type="name"/>
 </element>

 <element name="glossdef" props="def gloss">
 <usage>Defines a glossary definition entry</usage>
 </element>

 <element name="abbrdef" props="def abbr">
 <usage>Defines an abbreviation entry</usage>
 </element>

 <element name="tmarkdef" props="def tmark">
 <usage>Defines a trademark entry</usage>
 </element>

 <element name="tset" props="def tab">
 <usage>Tab</usage>
 <attr name="t1" type="tval"/>
 <attr name="t2" type="tval"/>
 <attr name="t3" type="tval"/>
 <attr name="t4" type="tval"/>
 <attr name="t5" type="tval"/>
 <attr name="t6" type="tval"/>
 <attr name="t7" type="tval"/>
 <attr name="t8" type="tval"/>
 <attr name="t9" type="tval"/>
 <attr name="t0" type="tval"/>
 <attr name="t11" type="tval"/>
 <attr name="t12" type="tval"/>
 <attr name="t13" type="tval"/>
 <attr name="t14" type="tval"/>
 <attr name="t15" type="tval"/>
 <attr name="t16" type="tval"/>
 <attr name="t17" type="tval"/>
 <attr name="t18" type="tval"/>
 <attr name="t19" type="tval"/>
 <attr name="t20" type="tval"/>
 </element>

</lib>

<!-- end of stdelems.xml -->

C.6 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h stdgloss.mxl74

<lib id="stdgloss">

<!-- stdgloss.mxl describes the standard uDoc glossary -->
<!-- Version 0.1, July 15, 2013 -->

<!-- glossary definitions look like this:

<glossdef id="name" idrefs="other more">
 Idrefs link to ids of other related glossdefs,
 which should have their own definition entries

<title>Full Name</title>
<desc>Text for mouseover of references</desc>

 Content can include text elems, figs, tables,
 and any other block elements as needed:
<p>Full definition with explanations.</p>

</glossdef>

 When the definitions are referenced, like this:
 <term idref="name"/>

 or with fallback content:
 <term idref="name">default text</term>

 the content, along with idrefs, is marked to be included
 in a generated glossary, which will thus include only the
 terms actually used in the project.

 ==> Template to copy:

 <glossdef id="" idrefs="">
 <title></title>
 <desc></desc>
 <p><xref src=""></xref></p>
 </glossdef>

 -->

<glossdef id="cals">
<title>CALS table model</title>
<desc>A standard for representing tables in SGML or XML</desc>
<p>CALS (Continuous Acquisition and Life-cycle Support) is a United States Department of Defense initiative designed to capture military documentation and link it to related information. The <xref src="https://www.oasis-open.org/specs/a502.htm">DTD for the CALS table model</xref> consists of a set of element and attribute declarations that partly define the model.</p>
</glossdef>

<glossdef id="d2g">
<title>DITA2Go</title>
<desc>A Windows software tool that converts DITA content to several other formats</desc>
<p><xref src="http://dita2go.com/">DITA2Go</xref> converts DITA documents to other formats; the conversion process is governed by settings in one or more configuration files. DITA2Go is organized around the idea of formats, which are packages of presentational content, just as elements are packages of semantic content. DITA2Go provides the means to perform two primary tasks: map DITA elements to output formats, and define presentational properties of those output formats. DITA2Go also carries out a number of output-type-dependent secondary tasks, such as constructing Help file infrastructure.</p>
</glossdef>

<glossdef id="u2g">
<title>uDoc2Go</title>
<desc>A Windows software tool that converts uDoc content to several other formats</desc>
<p><xref src="http://dita2go.com/">DITA2Go</xref> converts uDoc documents to other formats; the conversion process is governed by settings in one or more configuration files.</p>
</glossdef>

<glossdef id="ditaot" idref="dita">
<title>DITA-OT</title>
<desc>Set of Java-based open-source software tools for processing DITA maps and topics.</desc>
<p>DITA-OT (DITA Open Toolkit) is primarily a publishing tool, intended to convert DITA content into various output formats, which can be extended by development of additional plug-ins. It is written in XSLT and Java, and is available from <xref src="http://sourceforge.net/projects/dita-ot/">SourceForge</xref>.</p>
</glossdef>

<glossdef id="dbk">
<title>DocBook</title>
<desc>Semantic markup language for technical documentation.</desc>
<p>DocBook is a semantic XML language that provides element tags of three broad types: structural, block-level, and inline. DocBook is intended for technical documents related to computer hardware and software, but is also appropriate for other kinds of technical documents. See <xref src="http://docbook.org/">its Web site</xref>.</p>
</glossdef>

<glossdef id="mathml">
<title>MathML</title>
<desc>XML application for describing mathematical notation.</desc>
<p>Mathematical Markup Language (<xref src="http://www.w3.org/TR/2010/REC-MathML3-20101021/">MathML</xref>) describes mathematical notation, including both structure and content. Its purpose is to integrate mathematical formulae into World Wide Web pages and other documents. MathML is a recommendation of the W3C math working group, and is part of HTML5.</p>
</glossdef>

<glossdef id="m2g">
<title>Mif2Go</title>
<desc>FrameMaker plug-in that converts FrameMaker content to various other formats.</desc>
<p><xref src="http://mif2go.com/">Mif2Go</xref> provides the means to perform two primary tasks: map FrameMaker formats to output formats, and define presentational properties of those output formats. Mif2Go also carries out a number of output-type-dependent secondary tasks, such as constructing Help file infrastructure. Mif2Go relies on both rules and instance mark-up. Rules come from settings in configuration files; instance mark-up is in the FrameMaker files themselves, in the form of custom FrameMaker markers.</p>
</glossdef>

<glossdef id="sgml">
<title>SGML</title>
<desc>Standard Generalized Markup Language for organizing and tagging elements of a document</desc>
<p><xref src="http://www.w3.org/TR/html4/intro/sgmltut.html">SGML</xref> is an ISO standard system for defining markup languages, for tagging headings, paragraphs, tables, and graphics in a document according to their meaning and relationship to other elements rather than to the format of their presentation. HTML is an SGML application that uses a fixed set of tags, while XML is a simplified version of SGML.</p>
</glossdef>

<glossdef id="tabstop">
<title>tab stop</title>
<desc>Location on a text line that marks the beginning of a column</desc>
<p>Tab stops are preset locations on a line of text. Although space characters can be used to line up columns of numbers and names in a monospaced font, proportional fonts, with varying widths of letters, require preset locations for proper column alignment. Tab stops in uDoc are numbered, and the location of each is determined by the corresponding metric specified in the definition of the format in use.</p>
</glossdef>

<glossdef id="transc">
<title>transclusion</title>
<desc>Including part or all of a document by reference</desc>
<p>Inclusion of a document or part of a document into another document by reference</p>
</glossdef>

<glossdef id="xml" idrefs="sgml udoc mxml">
<title>XML</title>
<desc>Set of rules for encoding documents in machine-readable form</desc>
<p>Extensible Markup Language (<xref src="http://www.w3.org/TR/REC-xml/">XML</xref>) is a subset of <xref idref="sgml">SGML</xref>, designed to be used on the World Wide Web. <xref idref="mxml">MicroXML</xref> is a simplified version of XML, and <xref idref="udoc">uDoc</xref> is a MicroXML application.</p>
</glossdef>

<glossdef id="xsd" idref="xml">
<title>XSD</title>
<desc>XML Schema Definition</desc>
<p>XSD is a reference library that provides an API for manipulating the components of an XML Schema.</p>
</glossdef>

<glossdef id="xslt" idref="xml">
<title>XSLT</title>
<desc>Extensible Stylesheet Language Transformations</desc>
<p><xref src="http://www.w3.org/standards/xml/transformation">XSLT</xref> is a language for transforming <xref idref="xml">XML</xref> documents into other XML documents, or into other objects such as HTML for web pages, plain text, or XSL Formatting Objects (XSL-FO) which can then be converted to PDF, PostScript, and PNG.</p>
</glossdef>

<glossdef id="xslfo" idref="xml">
<title>XSL-FO</title>
<desc>Extensible Stylesheet Language Formatting Objects</desc>
<p><xref src="http://www.w3.org/standards/xml/publishing">XSL-FO</xref> is an XML markup language for describing page layout and formatting.</p>
</glossdef>

<glossdef id="mxml" idrefs="udoc xml">
<title>MicroXML</title>
<desc>Simplified version of XML</desc>
<p>MicroXML is a simplified version of <xref idref="xml">XML</xref> created in 2013 by James Clark and John Cowan, two of the original creators of XML, to address what they saw as overcomplication in XML itself. The spec for it is currently supported by a <xref src="https://dvcs.w3.org/hg/microxml/raw-file/tip/spec/microxml.html">W3C Community Group</xref>. The <xref idref="udoc">uDoc document format</xref> is one of its first applications.</p>
</glossdef>

<glossdef id="udoc" idrefs="mxml dita">
<title>uDoc</title>
<desc>A MicroXML document format</desc>
<p>The uDoc docoument format, pronounced <q>YOU-doc</q>, is a block-oriented content markup language written using <xref idref="mxml">MicroXML</xref>. It is similar to <xref idref="dita">DITA</xref>, but much more permissive and easier to use.</p>
</glossdef>

<glossdef id="dita" idrefs="udoc xml">
<title>Darwin Information Typing Architecture (DITA)</title>
<desc>Darwin Information Typing Architecture</desc>
<p>The <xref src="http://www.dita2go.com/ditaspec/_dita-1.2-specification.htm">DITA</xref> docoument format is a block-oriented content markup language written using <xref idref="xml">XML</xref>. It is similar to <xref idref="udoc">uDoc</xref>, but much more restrictive and as a result is harder to use.</p>
</glossdef>

<glossdef id="foss">
 <title>FOSS</title>
 <desc>Free and open-source software</desc>
 <p><xref src="https://en.wikipedia.org/wiki/Free_and_open_source_software">FOSS</xref> is computer software that is free to use and free to alter. The source code is openly shared to encourage people to improve it.</p>
 </glossdef>

</lib>

<!-- end of stdgloss.mxl -->

C.7 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h stdlists.mxl78

<lib id="stdlists">

<!-- stdlists.mxl describes the standard uDoc doclist element definitions -->
<!-- Version 0.1, July 3, 2013 -->

<listdef id="toclist" sort="doc" class="tocitem">
 <usage>Defines a 6-level Table of Contents</usage>
 <title>Table of Contents</title>
 <item level="1" elpath="title/doc/docref/root" />
 <item level="2" elpath="title/doc/docref/ref/root" />
 <item level="3" elpath="title/doc/docref/ref/ref/root" />
 <item level="4" elpath="title/doc/docref/ref/ref/ref/root" />
 <item level="5" elpath="title/doc/docref/ref/ref/ref/ref/root" />
 <item level="6" elpath="title/doc/docref/ref/ref/ref/ref/ref/root" />
</listdef>

<listdef id="loflist" sort="doc" class="lofitem">
 <usage>Defines a single-level List of Figures</usage>
 <title>List of Figures</title>
 <item level="1" elpath="title/fig/*" itemclass="figtitle" />
</listdef>

<listdef id="lotlist" sort="doc" class="lotitem">
 <usage>Defines a single-level List of Tables</usage>
 <title>List of Tables</title>
 <item level="1" elpath="title/table/*" itemclass="tabletitle" />
</listdef>

<listdef id="subjectindex" sort="alpha" class="idxitem">
 <usage>Defines a multi-level Subject Index, levels determined by entry content</usage>
 <title>Subject Index</title>
 <item level="0" elpath="index/*" />
</listdef>

<listdef id="termindex" sort="alpha" class="idxitem">
 <usage>Defines a single-level index of terms</usage>
 <title>Term Index</title>
 <item level="1" elpath="term/*" itemclass="idxterm"/>
</listdef>

<listdef id="glosslist" sort="alpha" class="glossitem">
 <usage>Defines a single-level glossary</usage>
 <title>Glossary</title>
 <item level="1" elpath="term/*" itemclass="glossterm"/>
</listdef>

</lib>

<!-- end of stdlists.mxl -->

C.8 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h stdtmarks.mxl79

<lib id="stdtmarks">

<!-- stdtmarks.mxl describes the standard uDoc trademarks -->
<!-- Version 0.1, July 17, 2013 -->

<trademark id="d2g">
<title>DITA2Go™</title>
<p>DITA2Go™ is a trademark of Omni Systems.</p>
</trademark>

<trademark id="m2g">
<title>Mif2Go™</title>
<p>Mif2Go™ is a trademark of Omni Systems.</p>
</trademark>

<trademark id="u2g">
<title>uDoc2Go™</title>
<p>uDoc2Go™ is a trademark of Omni Systems.</p>
</trademark>

</lib>

<!-- end of stdtmarks.mxl -->

C.9 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h stdvars.mxl80

<lib id="stdvars">

<!-- stdvars.mxl describes the standard uDoc variables -->
<!-- Version 0.1, June 24, 2013 -->

<!-- variable definitions look like this:
<variable id="name">inline text content</variable>
 when they are referenced, like this:
 <var idref="name"/>
 or with fallback content:
 <var idref="name">default text</var>
 the content is used, but the variable wrapper is not
 -->

<variable id="company">Omni Systems</variable>
<variable id="ud">uDoc</variable>
<variable id="fm">FrameMaker</variable>

<variable id="date" idref="$date" type="%B %#d, %Y" />
<variable id="author" idref="$$author[1]" />

</lib>

<!-- end of stdvars.mxl -->

Appendix D. SEQ A2 \r0 \h

SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h

SEQ A6 \r0 \h

SEQ A7 \r0 \h

SEQ A8 \r0 \h MXL MicroXML Parser81
MicroXML is a simplified subset of normal XML 1.0 (5th edition) created by James Clark and John Cowan. The MicroXML specification is currently the subject of a W3C Community Group, but is not a W3C Standard or on the Standards Track. An informative pair of articles about it by Uche Ogbuji are here and here.

The MXL Parser is designed to parse MicroXML by two different methods. It produces a Data Model in stricr accordance with the spec, and also provides SAX-type push parsing at the same time. Either or both are selectable.

MXL reports as errors everything in the document that is not conformant to the MicroXML spec. In its FullXML mode, it does the same, and when in its SAX mode it also reports the content of four constructs excluded from the data model: comments, DOCTYPEs, CDATA sections, and PIs. They each have their own callback function. None of the four ever appear in the Data Model itself, and the parser does not read any referenced DTD or schema. Therefore it will not add attributes from a DTD (such as the @class used in DITA) to the elements.

MXL is written in C++ and is currently compiled with Visual C++ 6.0. It references windows.h along with stdio.h and stdlib.h, but does not use Microsoft-specific functions, so it should be readily portable to other platforms. The Windows version consists of two parts: mxlparser.dll, the parser itself, and mxl.exe, a simple console driver for it. Downloads are available on the uDoc2Go site for the Windows executables and for the C++ source. The parser is also hosted on GitHub.

The MXL parser is FOSS, released under the Apache license to permit commercial use.

D.1 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h MXL Operation81
In a Windows command prompt window, the MXL parser is invoked by:

 Usage: mxl [sourcefile (default is stdin)] [options]
 Options:
 -o outputfile Default is stdout
 -e errorfile Default is stderr
 -n No content model, otherwise sent as JSON to outputfile
 -s Send SAX messages (as diagnostics) to errorfile
 -f FullXML report DOCTYPE, CDATA, and PIs as SAX messages
 to errorfile instead of reporting them as errors
 -x Expat callbacks for start and end tags, text, and PIs
 -a Provide brief help on the mxlparser.dll API
 -h or -?, Provide help (this message)

The API help mentioned there is:

 API for mxlparser.dll:
 First create an MxlParser with:
 MxlParser *Parser = new MxlParser();
 Optionally, set up options and SAX callbacks:
 Parser->SetOptions(UseSAX, UseModel, FullXML); (all bools)
 Parser->SetCallbacks(ErrFileName, ReportErrorFunc,
 StartTagFunc, EndTagFunc, TextContentFunc, ReportCDataFunc,
 ReportPIFunc, ReportDoctypeFunc, ReportCommentFunc);
 For expat-compatible callbacks, use SetExpatCallbacks instead,
 which has a longer list of callbacks.
 Finally, parse the file: element *DataModel = Parser->ParseFile(SourceFileName);

 Error messages and comments are sent to ErrFileName (default
 stderr) unless the Report*Func says otherwise.
 If UseSax, the Tag and Text callbacks are used; the stub functions
 for them report the UTF-32 strings in JSON to ErrFileName.
 If UseModel, the data model is returned at the end as a struct
 with all strings in UTF-32 encoding, zero terminated.
 If FullXML, the DOCTYPE, CDATA, and PIs are reported as SAX messages
 instead of errors; they are never in the data model.

D.2 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h Data Model82
The Data Model is returned as a structure by mxlparser.dll upon completion of the parse. All text items in it are in UTF-32 strings, zero-terminated, for which length is also given in the structure:

typedef unsigned char unc;typedef unsigned long unl;

struct element { // data model uses one top element per doc
 unl *name; // array of UTF-32 chars
 long namelen;
 pair **attrs; // array of attribute pairs
 long attrcnt;
 cont **content; // arrays of element ptrs or UTF-32 chars
 long contcnt;};

struct pair {
 unl *name; // attribute name, UTF-32
 long namelen;
 unl *val; // attribute value, UTF-32
 long vallen;};

struct cont {
 void *it; // ptr to array of UTF-32 chars or element
 long cnt; // count if chars, 0 if element
};

For convenient study, the driver converts the structure to JSON format as used in the spec, and writes it to stdout (or to a specified file) at completion. Here is what it produces for the sample in par. 3.1 of the spec:

["comment",

{
"lang": "en",

"date": "2012-09-11"

},

[
"\nI ",

["em", {}, ["love"]

],

" \u00B5XML!",

["br", {}, []

],

"\nIt's so clean & simple."

]
]

This is slightly different formatting from the spec, as we wanted to make all braces and brackets have matching start and end columns when they held more than one item.

D.3 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h SAX Callbacks82
When SAX mode is enabled, the parser calls back to these functions, which are sent character data in UTF-32:

 void StartTag(unl *name, long namecnt, pair **attrs, long attrcnt);
 void EndTag(unl *name, long namecnt);
 void TextContent(unl *text, long textcnt);

In FullXML SAX mode, it also uses these, which are sent character data in UTF-8:

 void ReportComment(char *comment);
 void ReportPI(char *pi);
 void ReportDoctype(char *doctype);
 void ReportCData(char *cdata);

Whether in SAX mode or not, it always reports errors via this function, which is sent character data in UTF-8:

 void ReportError(long line, char *warning, char *cpt, bool fatal);

Hardly any errors are considered fatal; for most, some form of recovery is at least attempted. For example, the parser tries to match an end tag that doesn't match the current start tag to the parents of the current element. It reports any such issues and fixes as errors.

The stub functions provided for the callbacks all report the name of the callback and the text sent to it in JSON format to stderr (or to the errorfile set by the user). Hence callbacks and errors precede the output of the Data Model when SAX is specified but no callbacks are set in mxlparser.dll by the using program.

D.3.1 SEQ A4 \r0 \h

SEQ A5 \r0 \h expat-compatible Callbacks

When callbacks are set with SetExpatCallbacks, these are used:

 void StartTag(void *userdata, char *name, long namecnt, char **attrs);
 void EndTag(void *userdata, char *name, long namecnt);
 void TextContent(void *userdata, char *text, long textcnt);
 void StartCdataSection(void *userdata);
 void EndCdataSection(void *userdata);
 void ReportPI(void *userdata, char *target, char *data);
 void XMLDecl(void *userdata, char *version, char *encoding,
 int standalone); [standalone = -1]
 void StartDoctypeDecl(void *userdata, char *name, char *sys,

char *pub, int internalsubset); [internalsubset = 0]
 void EndDoctypeDecl(void *userdata);
 void ReportComment(void *userdata, char *comment);

The stub functions add “Ex” to the start of the reports, as in “ExPI:”. All names and content are in UTF-8.

D.4 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h Licensing83
The MXL Parser is entirely written by Jeremy H. Griffith of Omni Systems, <jeremy@omsys.com>. Omni intends to use it for an upcoming product, working name uDoc, which is a MicroXML editor specifically configured for a document format similar to a simplified DITA.

We are licensing at least the parser, and probably the entire uDoc editor product, as FOSS under the Apache license. We also plan to create a SourceForge project for it.

Omni currently has three products available. The first is Mif2Go, a commercial converter from FrameMaker source to a variety of output formats, including Word, DITA, HTML, and many forms of Help such as FOSS OmniHelp hosted on SourceForge. Mif2Go is free for a large number of its users: the unemployed, retired, underemployed consultants, academics (staff, faculty, students), most nonprofits, and FOSS developers. Quite a few of its paying customers are Fortune 100's and government agencies, who can afford to support the rest.

The second is DITA2Go, a converter from DITA to the same outputs as Mif2Go, with which it shares a large part of its code.

The third is uDoc2Go, whick converts from uDoc to the same outputs as Mif2Go, with which it also shares a large part of its code.

Part of the impetus for the newest product is concern over the deteriorating quality and increasing cost of Adobe's Framemaker. The other part is concern over the difficulties many users are experiencing with the increasing complication of DITA. MicroXML fits well with a product meant to improve life for the Technical Writers using both Frame and DITA.

Appendix E. SEQ A2 \r0 \h

SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h

SEQ A6 \r0 \h

SEQ A7 \r0 \h

SEQ A8 \r0 \h The udx Utility85
Not all processors will support uDoc tag minimization features. So along with the mxlparser, we provide a utility, udx, to transform uDoc files containing short tags and wiki symbol markup into files with full MicroXML tags. For ease of authoring and editing, the same utility can convert the other way, replacing full tag markup with minimizations wherever possible. Either way, the conversion is lossless.

The rules udx uses are simple, and are controlled by a number of settings in udx.ini. The defaults are built iinto the software, and can be overridden by command-line switches and by modifying the corresponding udx.ini settings. The element properties in [CodeElements] and [ElementTypes] are used for the wiki symbol processing and for adding <p> tags within block elements that wrap text. If you create new elements meant to contain code, or create new text or inline elements, add those new elements to udx.ini.

Sometimes you may want udx to skip some parts of a file, while processing others. The <udx> tag provides this functionality within a document.

Full-tag creation from short tags and from wiki symbols is the default operation, and can also be specified with the “-f” switch on the command line. It does four things:

•
Full tags from short tags: the short tag is replaced by the full start tag (including any attributes) after any leading returns, and the full end tag is inserted at the end of the short-tag scope, before any trailing returns.

•
Full tags from wiki symbols: the symbols are processed as toggles, where the first becomes the start tag and the second becomes the end tag, alternating to the end of the paragraph. Symbols within code that do not start code themselves are kept literally.

•
Replacement of two or more returns within a <p> element with the sequence </p>\n\n<p>, where the original returns are retained so that line numbers do not change.

•
Insertion of <p> and </p> tags within block elements (such as and <cell>) as required to wrap contained text. The <p> immediately follows the block start element with no whitespace in between; the </p> goes at the end of the block element scope, before any trailing returns.

Tag minimization is specified with the “-m” switch on the command line. There are four actions it performs:

•
Short tag minimization: the full start tag is replaced with an empty short tag, and the full end tag is discarded.

•
Wiki symbol minimization: both the start tag and the end tag are replaced by the symbol.

•
Removal of </p>\n\n<p> sequences between normal <p> paragraphs that do not have attributes. The two (or more) returns are retained, so line numbers do not change.

•
Removal of <p> and </p> tags within block elements such as and <cell>. The ones removed are those with no attributes and no white space before the <p> start tag.

The udx utility is released as FOSS under the Apache 2 license to permit commercial use. It uses and includes the MXL parser. Downloads are available on the uDoc2Go site for the Windows executable and the C++ source. The utility is also hosted on GitHub.

E.1 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h The udx Switches85
Many udx options are controlled by command-line switches. The pair that control overall processing are:

•
-f, convert to full tags, the default, for the benefit of regular XML tools.

•
-m, minimize tags, to provide easier authoring and editing.

By default, the converted file replaces the original file at the end of the process. If you want it to go to a different file, use:

•
-o filename.mxd to write to a new name in the same (or a different) directory.

•
-o path\to\dest to write to the same name in a different directory. The path can be relative or absolute; the original name is appended to it. We normally use •
-o ..\full or •
-o ..\min during testing.

To log error reports to a file, instead of sending them to stderr on the console, use -e logfile.txt, which can have an absolute or relative path.

After choosing the processing, these switches override Options settings in udx.ini:

•
-s specifies whether to convert short tags (either way):

◦
-sa applies to all short tags.

◦
-st applies to short tags in tables.

◦
-sp applies to short tags in pair lists, ◦
<pl>.

◦
-sl applies to short tags in other lists: ◦
, ◦
, and ◦
<sl>.

•
-w specifies whether to convert to or from wiki symbols.

•
-b specifies conversion to or from blank lines in •
<p> elements.

•
-p specifies wrapping or unwrapping text in block elements in •
<p> elements.

Switches have a cumulative effect, and apply to the following source filename(s). For example, -o ..\full myminsrc.mxd -m -o ..\min myfullsrc.mxd creates a full-tagged version of the first file in ..\full\myminsrc.mxd and a minimized version fo the second in ..\min\myfullsrc.mxd. If you need to change any of the -s switches in between, -n reverses the effect of the previous matching -s; for example, -nst reverses a preceding -st.

If the source file name contains a wildcard, that is typically expanded by the shell into a series of matching names. Each is then processed using the same preceding switches. Make sure that you use the -o path switch so that the results are written to different files.

Finally, the -h and -? switches both do the same thing: provide help for the switches in the console window.

E.2 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h The udx.ini File86
The udx.ini file sets the default options for a udx conversion. The options shown below are all built in to the udx program itself. Therefore you do not need a udx.ini file unless you want something to work differently. For example, if you add your own new elements, and want udx to do something with them (like support short tags for them), you will want to create a custom ini based on the udx.ini supplied with the software.

If you do create a custom udx.ini, put it in the directory in which you invoke udx, usually the same directory as the source files.

The rules udx uses for converting from minimized to full-tag form, the default operation, are controlled by these settings in udx.ini:

[udxFullTaggingOptions]
AddPTagsInBlocks=Yes
BlankLinesInTextConvert=Yes
ListsConvert=Yes
PairListsConvert=Yes
TablesConvert=Yes
WikiSymbolsConvert=Yes

For short tags, of the type <x/>, the rules are:

[ShortTagContainers]
; full tag = start of ini section names
pl=pairlist
ol=list
ul=list
sl=listtable=table

[ListShortTagReplacement]
; in lists ol, ul, and sl:l=li

[PairListShortTagReplacement]
; in pair lists pl:
l=li
t=titled=p

[TableShortTagReplacement]
; in tables:
t=title
r=rowc=cell

[ListShortTagEnds]
; all end at the end of the enclosing listl=l li

[PairListShortTagEnds]
; all end at the end of the enclosing pair list
l=l li
t=t title d p l lid=d p l li

[TableShortTagEnds]
; all end at the end of the enclosing table
t=r row col
r=r row col
c=c cell r row col

The wiki symbol rules are:

[WikiSymbolReplacement]
; toggles: first is start tag, next is end tag
; symbol = tag (or -), start, end
*=b
_=i
"=q
`=tt
^=tt < >

For ease of authoring and editing, the udx utility can also convert the other way, replacing full tag markup with minimizations wherever possible. That option is selected by the “-m” command-line switch. Either way, the conversion is lossless. The options for minimization are:

[udxTagMinimizingOptions]
RemovePTagsFromBlocks=Yes
TextEndStartTagsToBlanklinesConvert=Yes
ListsToShortTagsConvert=Yes
PairListsToShortTagsConvert=Yes
TablesToShortTagsConvert=Yes
InlineTagsToWikiSymbolsConvert=Yes

For short tag minimization, the full start tag is replaced with an empty short tag, and the full end tag is discarded:

[ListLongTagReplacement]
; in lists ol, ul, and sl:li=l

[PairListLongTagReplacement]
; in pair lists pl:
li=l
title=tp=d

[TableLongTagReplacement]
title=t
row=r
cell=c

For wiki symbol minimization, both the start tag and the end tag are replaced by the symbol:

[WikiTagReplacement]
; tag (or char at start or end of text item) = symbol
b=*
i=_
q="
; the following ones disable the previous wiki symbols:
tt=`
; these two also remove tt if the tt tags are adjacent
; to the start/end tag symbols in inline content:
<=^
>=^

These element properties are used for the wiki symbol processing and for AddPTagsInBlocks. If you create new elements meant to contain code, or new text or inline elements, add them to udx.ini here:

[CodeElements]
; name = type (block, text, or inline)
pre=text
code=blocktt=inline

[ElementTypes]
p=text
pre=text
title=text
subtitle=text
t=text
d=text
usage=text
quote=text
cite=text
desc=text
alt=text
area=text
ph=inline
term=inline
abbr=inline
tm=inline
xref=inline
seq=inline
mark=inline
idx=inline
var=inline
img=inline
fn=inline
br=inline
b=inline
i=inline
u=inline
du=inline
o=inline
s=inline
sup=inline
sub=inline
tt=inline
q=inline
t1=inline
t2=inline
t3=inline
t4=inline
t5=inline
t6=inline
t7=inline
t8=inline
t9=inline
t10=inline
t11=inline
t12=inline
t13=inline
t14=inline
t15=inline
t16=inline
t17=inline
t18=inline
t19=inline
t20=inline

E.3 SEQ A3 \r0 \h

SEQ A4 \r0 \h

SEQ A5 \r0 \h The <udx> Tag89
Sometimes you may want udx to process some parts of a file, while skipping over others. You can specify the areas to be handled differently with the <udx> tag in the document. Use the tag the way you use a <div>, with the <udx> start tag at the beginning of the part, and the </udx> end tag at the end of it. The <udx> tags themselves are retained in the output.

Why would you want to do this? In this spec, we have some code sections that are specifically meant to show full tagging, and others meant to show minimization. If those are converted without the <udx> tags, both sections would come out the same, and would no longer demonstrate the differences between the two uDoc forms. It's a fairly unusual case, unless you are writing about uDoc itself, but since we needed it, others might too.

The <udx> tag has one attribute, switch, with one of the following values:

•
switch="none": the default, •
udx skips the section entirely.

•
switch="nofull": prevents •
udx from making full tags, but allows minimization.

•
switch="nomin": prevents •
udx minimization, but allows making full tags.

Glossary

CALS table model

CALS (Continuous Acquisition and Life-cycle Support) is a United States Department of Defense initiative designed to capture military documentation and link it to related information. The DTD for the CALS table model consists of a set of element and attribute declarations that partly define the model.

Darwin Information Typing Architecture (DITA)

The DITA docoument format is a block-oriented content markup language written using XML. It is similar to uDoc, but much more restrictive and as a result is harder to use.

DITA

Darwin Information Typing Architecture

 See Darwin Information Typing Architecture (DITA)
DITA-OT

DITA-OT (DITA Open Toolkit) is primarily a publishing tool, intended to convert DITA content into various output formats, which can be extended by development of additional plug-ins. It is written in XSLT and Java, and is available from SourceForge.

DITA2Go

DITA2Go converts DITA documents to other formats; the conversion process is governed by settings in one or more configuration files. DITA2Go is organized around the idea of formats, which are packages of presentational content, just as elements are packages of semantic content. DITA2Go provides the means to perform two primary tasks: map DITA elements to output formats, and define presentational properties of those output formats. DITA2Go also carries out a number of output-type-dependent secondary tasks, such as constructing Help file infrastructure.

DocBook

DocBook is a semantic XML language that provides element tags of three broad types: structural, block-level, and inline. DocBook is intended for technical documents related to computer hardware and software, but is also appropriate for other kinds of technical documents. See its Web site.

MicroXML

MicroXML is a simplified version of XML created in 2013 by James Clark and John Cowan, two of the original creators of XML, to address what they saw as overcomplication in XML itself. The spec for it is currently supported by a W3C Community Group. The uDoc document format is one of its first applications.

Mif2Go

Mif2Go provides the means to perform two primary tasks: map FrameMaker formats to output formats, and define presentational properties of those output formats. Mif2Go also carries out a number of output-type-dependent secondary tasks, such as constructing Help file infrastructure. Mif2Go relies on both rules and instance mark-up. Rules come from settings in configuration files; instance mark-up is in the FrameMaker files themselves, in the form of custom FrameMaker markers.

Omni

Omni Systems

OT

DITA Open Toolkit

 See DITA-OT
SGML

SGML is an ISO standard system for defining markup languages, for tagging headings, paragraphs, tables, and graphics in a document according to their meaning and relationship to other elements rather than to the format of their presentation. HTML is an SGML application that uses a fixed set of tags, while XML is a simplified version of SGML.

tab stop

Tab stops are preset locations on a line of text. Although space characters can be used to line up columns of numbers and names in a monospaced font, proportional fonts, with varying widths of letters, require preset locations for proper column alignment. Tab stops in uDoc are numbered, and the location of each is determined by the corresponding metric specified in the definition of the format in use.

uDoc

The uDoc docoument format, pronounced “YOU-doc”, is a block-oriented content markup language written using MicroXML. It is similar to DITA, but much more permissive and easier to use.

uDoc2Go

DITA2Go converts uDoc documents to other formats; the conversion process is governed by settings in one or more configuration files.

XML

Extensible Markup Language (XML) is a subset of SGML, designed to be used on the World Wide Web. MicroXML is a simplified version of XML, and uDoc is a MicroXML application.

XSLT

XSLT is a language for transforming XML documents into other XML documents, or into other objects such as HTML for web pages, plain text, or XSL Formatting Objects (XSL-FO) which can then be converted to PDF, PostScript, and PNG.

Abbreviations

DITA

Darwin Information Typing Architecture

Omni

Omni Systems

OT

DITA Open Toolkit

Trademarks

DITA2Go™

DITA2Go™ is a trademark of Omni Systems.

Mif2Go™

Mif2Go™ is a trademark of Omni Systems.

uDoc2Go™

uDoc2Go™ is a trademark of Omni Systems.

Index

Sym Num A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

abbreviations, list of
37

addressing

in references
32

indirect
32

other projects
33

ALinks
26

Arbortext
4

attributes, predefined, listed
45

B

block element types
11

data
11

definition
11

group
11

reference
11

root
11

structure
11

branching
29

C

class attribute
27

code transclusion
32

conditions
28

defining, in libraries
16

for flagging
28

in tables
28

content models
42

cross references
25

D

Darwin Information Typing Architecture (DITA), complexity of
1

data elements
11

predefined
10

definition elements
11

DITA 1.2 and uDoc, compared
49

DITA-OT
1

<doc> files
15

DocBook
4

document file, example of
52

E

element types
11

block
11

inline
11

text
11

elements

attributes of, predefined
45

data, predefined
10

for graphics
20

for tables
21

foreign, only by reference
42

grouping
18

for re-use
18

hierarchical
18

nested
18

wrappers
18

list
18

specialized for generated lists
35

new, defining
39

predefined, library of
39

properties of
43

typographic
11

virtual
40

errors, recovering from
5

F

figures

 See graphics, inline and block
files

<doc>, for content
15

<lib>, for definitions and reusable content
16

<map>, for structure
15

flagging with conditions
28

foreign elements
42

format, uDoc

 See uDoc
FrameMaker, converting

to DITA
1

to DocBook
1

G

generated lists
35

glossary

generating
36

items, defining
36

items, referencing
36

25

,
graphics, inline and block
20

group elements
11

H

hashtags
26

I

image maps
20

images, including

 See graphics, inline and block
index entries

formatting
36

levels, specifying
36

see/see-also
36

typographics in
36

indexes
35

generating
36

indirect addressing
32

inline element types
11

interoperability
6

K

keys

defining, in library files
16

for cross-project references
33

for indirect addressing
32

L

library files
16

example
53

standard
55

links

ALinks
26

reference
25

related
26

list elements
18

ordered and unordered
18

pairs
18

simple
18

lists

for numbering table rows
42

generated
35

abbreviations
37

trademarks
37

M

Mallard
4

<map> files
15

maps

example map file
51

transitional text in
15

metadata elements
10

MicroXML
1

basis for uDoc format
1

Mif2Go
1

O

output format, specifying
31

output-dependent processing
31

P

pernicious mixed content
11

predefined data elements
10

processing, output-dependent
31

properties of elements
43

Q

query references
26

R

reference elements
11

references

addressing in
32

cross

 See cross references
glossary
25

query
26

text
25

to glossary items
36

to other projects
33

to output definitions
31

related links
26

weighting
26

Relax NG, for creating schemas
1

root elements
11

S

schema, creating your own for uDoc
1

see/see-also index entries
36

short tags

 See tags, minimizing
shorthand symbols for tags
41

8

,
SPFE
4

structure elements
11

symbols, shorthand for tags
41

8

,
T

tab stops, setting
23

tables

configuring
21

numbering rows in
42

tabs
23

for HTML output
23

for print output
23

setting stops for
23

tags

minimizing
15

8

,
for lists
18

for tables
21

shorthand symbols for
41

8

,
text element types
11

trademarks, list of
37

transclusion, code
32

transitional text in maps
15

typographic elements
11

U

uDoc
1

V

variables
25

predefined elements processed as
10

virtual elements
40

W

weighting related links
26

whitespace
11

wrapper elements
18

X

XSLT
1

1. Or use the less specialized .xml extension.�PAGEREF RmapUudfilesmxdEsuffix \h * MERGEFORMAT �1�

